Themenbereiche Themenbereiche Profile Hilfe/Anleitungen Help    
Recent Posts Last 1|3|7 Days Suche Suche Tree Tree View  

Ein Zylinder

ZahlReich - Mathematik Hausaufgabenhilfe » ---- Archiv: Klassen 8-10 » Geometrie » Dreidimensionale Körper » Zylinder » Ein Zylinder « Zurück Vor »

Autor Beitrag
Seitenanfangvoriger Beitragnächster BeitragSeitenende Link zu diesem Beitrag

anonym
Suche alle Beiträge dieser Person in dieser Hauptrubrik
Unregistrierter Gast
Veröffentlicht am Sonntag, den 10. März, 2002 - 03:48:   Beitrag drucken

Hallo,
ich hab da ne kleine Schwierigkeit mit der Aufgabe: Aus einem Zylinder wird ein Kegel herausgeschnitten, das Volumen des "Restkörpers" ist bekannt. Die Höhe h soll nun gerade r betragen. Wie hoch muss ein zu einer kugel vom Radius r gehöriger Kugelabschnitt sein, damit er das gleiche Volumen besitzt???
Ich hab keine Ahnung wie die entsprechende Formel aussehen müsste, wenn jemand ne Idee hat...
Seitenanfangvoriger Beitragnächster BeitragSeitenende Link zu diesem Beitrag

A.K.
Suche alle Beiträge dieser Person in dieser Hauptrubrik
Unregistrierter Gast
Veröffentlicht am Sonntag, den 10. März, 2002 - 09:13:   Beitrag drucken

Hallo Anonym

ich glaub in der Aufgabenstellung fehlt etwas.
Sind z.B. die Radien von Zylinder und Kegel gleich?
Gib doch mal die genaue Aufgabenstellung an.

Mfg K.
Seitenanfangvoriger Beitragnächster BeitragSeitenende Link zu diesem Beitrag

anonym
Suche alle Beiträge dieser Person in dieser Hauptrubrik
Unregistrierter Gast
Veröffentlicht am Sonntag, den 10. März, 2002 - 14:41:   Beitrag drucken

Hallo K.
die Radien vom Zylinder und Kegel sind gleich gross und der Zylinder ist auch genauso hoch wie der Kegel.

Gruss D.
Seitenanfangvoriger Beitragnächster BeitragSeitenende Link zu diesem Beitrag

A.K.
Suche alle Beiträge dieser Person in dieser Hauptrubrik
Unregistrierter Gast
Veröffentlicht am Montag, den 11. März, 2002 - 09:20:   Beitrag drucken

Hallo Anonym

warum gibst du nicht die genaue Aufgabenstellung an?

Bisher ist bekannt:
Höhe Zylinder = Höhe Kegel
Radius Zylinder = Radius Kegel

Dann steht in der Aufgabe
das Volumen des "Restkörpers" ist bekannt
Ja, wie groß denn?
Dann folgt:
Die Höhe h soll nun gerade r betragen
Heißt das
Höhe zylinder=Höhe Kegel=Radius Zylinder=Radius Kegel?

Mfg K.
Seitenanfangvoriger Beitragnächster BeitragSeitenende Link zu diesem Beitrag

anonym
Suche alle Beiträge dieser Person in dieser Hauptrubrik
Unregistrierter Gast
Veröffentlicht am Montag, den 11. März, 2002 - 16:25:   Beitrag drucken

Hallo K.

Bei der Aufgabe geht es um eine hypothetische Lösung nicht um ein konkretes Zahlenbeispiel.
Das Volumen des "Restkörpers" ergibt sich aus der Subtraktion des Volumens des Kegels von dem des Zylinders.
Die exakte Aufgabenstellung für die zweite Aufgabe sieht so aus: "Die Höhe h betrage nunmehr gerade r. Wie hoch muss ein zu einer Kugel vom Radius r gehöriger Kugelabschnitt sein, damit er den gleichen Rauminhalt besitzt?"
Ich weiss nicht so genau was ich mit der Aufgabe anfangen soll...

Gruss Dany

PS. Ich habe den "Namen" anonym deswegen gewält weil mein regulärer Benutzername samt Passwort nicht mehr funktioniert.Der Zylinder
Seitenanfangvoriger Beitragnächster BeitragSeitenende Link zu diesem Beitrag

A.K.
Suche alle Beiträge dieser Person in dieser Hauptrubrik
Unregistrierter Gast
Veröffentlicht am Montag, den 11. März, 2002 - 21:00:   Beitrag drucken

Hallo Dany

also nun doch h=r und damit
Restkörper=pi*r²*r-(1/3)pi*r²*r=(2/3)pi*r³

Für das Volumen eines Kugelabschnitts mit dem Radius r gilt
V=(1/3)pi*h²(3r-h)=(2/3)pi*r³ |*3
<=> pi*h²(3r-h)=2pi*r³ |:pi
<=> h²(3r-h)=2r³
<=> 3h²r-h³=2r³
<=> h³-3rh²+2r³=0
<=> (h-r)(h²-2rh-2r²)=0
=> h=r oder h²-2rh-2r²=0
=> h1,2=r±wurzel(r²+2r²)=r±wurzel(3r²)
=> h=r+rwurzel(3)

Mfg K.
Seitenanfangvoriger Beitragnächster BeitragSeitenende Link zu diesem Beitrag

Leonie 1988
Suche alle Beiträge dieser Person in dieser Hauptrubrik
Unregistrierter Gast
Veröffentlicht am Donnerstag, den 05. Januar, 2012 - 14:51:   Beitrag drucken

Hey .. setze gerade auch vor der Aufgabe .. kannst du mir deine schritte mal schritt für schritt erklären ? .. ^wieso machst du da denn aus einem minus h^3 ein plus .. dann hast du ja einen kompletten vorzeichenwechsel .. -.-

Beitrag verfassen
Das Senden ist in diesem Themengebiet nicht unterstützt. Kontaktieren Sie den Diskussions-Moderator für weitere Informationen.

ad

Administration Administration Abmelden Abmelden   Previous Page Previous Page Next Page Next Page