Autor |
Beitrag |
   
Christina (Omchen)

| Veröffentlicht am Samstag, den 10. März, 2001 - 16:12: |
|
Hi, bitte sagt mir wie man das rechnet: Der Oberflächeninhalt eines Würfels nimmt um 450cm² zu, wenn man die Kantenlänge um 3cm verlängert. Wie lang ist die ursprüngliche Kantenlänge des Würfels? Danke |
   
Bärbel Kranz (Fluffy)

| Veröffentlicht am Samstag, den 10. März, 2001 - 16:54: |
|
Hi Christina die Oberfläche eines Würfels ist : 6*a^2 Diese Fläche wird um 450 cm^2 größer - also 450 + 6a^2 - wwenn man die Kantenlänge um 3 cm verlängert - also a + 3. Das Ganze in die Gleichung gesetzt: 450 + 6a^2 = 6 * (a + 3 )^2 450 + 6a^2 = 6 * (a^2 + 6a + 9) 450 + 6a^2 = 6a^2 + 36a + 54 396 = 36 a 11 = a 1. Probe: 6*11^2 = 726 2. Probe: 6+14^2 = 1176 Fläche ist 450cm^2 größer Gruss Bärbel |
   
Christina (Omchen)

| Veröffentlicht am Samstag, den 10. März, 2001 - 18:30: |
|
Hallo Bärbel, Vielen Dank für Deine schnelle Antwort! Tschüss Christina |
|